Paralelogramma terület kerület számítás, és minden amit tudni érdemes egy érettségizőknek
A matek érettségi egyik nagy témaköre a geometria. Síkgeometriai, térgeometriai, trigonometriai, koordinátageometriai feladatok minden középszintű érettségin szerepelnek, nem is kevés pontért. Több olyan érettségi feladat volt már, amelyekben a négyszögekkel, háromszögekkel kapcsolatos tudást mérték fel. Ebben a blogbejegyzésben segítséget szeretnék nyújtani arról, hogy mit kell tudni a paralelogrammákról a matek érettségizőknek.
Mi az a paralelogramma?
A paralelogramma olyan négyszög, amelynek két-két szemközti oldala párhuzamos és egyenlő hosszú. Viccesen szólva a paralelogramma egy olyan téglalap, amit oldalba vágtak, és „eldőlt”. Fontos ismerni a paralelogramma tulajdonságait is, hogy könnyebben meg tudjunk oldani matek feladatokat. A négyszögek, köztük a paralelogramma definíciójáról, tulajdonságairól, kerületének, területének a kiszámításáról már általános iskolában is szó volt.
A paralelogramma tulajdonságai
A paralelogramma átlói felezik egymást, de csak a speciális paralelogrammák (téglalap, négyzet) átlói egyenlők. Sokan úgy gondolják, hogy a paralelogramma átlói merőlegesen felezik egymást, de ez csak a négyzetre és a rombuszra igaz.
A paralelogramma egy négyszög, tehát belső szögeinek összege 360 fok. A szomszédos szögeinek összege 180 fok, szemközti szögei egyenlők. Csak speciális paralelogrammánál (téglalap, négyzet) lesz az igaz, hogy minden szöge egyenlő, azaz derékszög.
A paralelogramma középpontosan szimmetrikus négyszög, szimmetriaközéppontja az átlók metszéspontja, ami a lenti ábrán narancssárgával van jelölve. De a paralelogramma nem tengelyesen szimmetrikus. Ez azt jelenti, hogy nincs olyan egyenes, amely mentén összehajtva a paralelogrammát, fedésbe kerül.
Paralelogramma kerület, terület számítás
Mivel a paralelogramma két-két szemközti oldal egyenlő hosszú, a kerületét a két oldal összegének a kétszereseként tudjuk kiszámolni. Azaz a paralelogramma kerülete: K=2(a+b). A paralelogramma terület számítás pedig úgy fog történni, hogy az oldalakat megszorozzuk a hozzá tartozó magassággal. Erről már az általános iskolai matek órákon is volt szó. A középiskolában a trigonometria témakör után egy másik területképlet is ismerté és alkalmazhatóvá válik. Az, hogy a paralelogramma területe a két oldal és a közbezárt szög szinuszának a szorzata.
Feladat paralelogrammáról matek érettségizőknek, középiskolásoknak
A korábbi években már több érettségi feladat is volt, amiben paralelogramma szerepelt. Ezeknek a feladatoknak a megoldása közben többször a korábban már említett terület- kerületképleteket kellett alkalmazni. Több olyan feladat is volt már, ahol a magasság berajzolásával keletkezett derékszögű háromszögből kellett tovább számolni. Ilyenkor a szögfüggvényeket vagy Pitagorasz tételt kellett alkalmazni. Itt most egy összetettebb paralelogrammás feladatot hoztam neked, próbáld megoldani önállóan.
Feladat: Egy paralelogramma hegyesszöge 40 fokos, területe 0,3214 négyzetméter, kerülete 3 méter. Mekkorák a paralelogramma oldalai?
Adok egy kis segítséget is a feladat megoldásához. Először is készíts egy ábrát, és írd ki az adatokat. Aztán írd ki a képleteket is. Mivel a négyszög egyik szöge van megadva a terület a két oldal és a közbezárt szög szinuszának a szorzataként számolható. Így két kétismeretlenes egyenletet kapsz, ennek az egyenletrendszernek a megoldásával kapod meg a paralelogramma oldalait.
Ha megoldottad a feladatot, akkor itt meg is nézheted a levezetését, megoldását.
Hasonló, rövid videókat találsz a YouTube csatornámon, iratkozz fel, ha matekból jól jönne egy kis segítség.
Éva
GOMATEK