Sikeres matekérettségi

Sikeres matekérettségi

Sikeres matekérettségi interaktív tanfolyam segítségével

Mindannyian megtapasztaltuk, hogy a középiskolás évek egyszerre szépek, izgalmasak és kihívásokkal telik. Benne az érettségi az, ami mindezt megkoronázza: összegzi az elmúlt négy év munkáját, és kaput nyit a jövő felé. Azonban az érettségire készülés közben van egy tantárgy, amitől a diákok többsége retteg, ez pedig a matematika. Nem véletlenül nevezik mumusnak, hiszen még azoknak is komoly fejtörést okozhat, akik egyébként jók a reál tantárgyakban. De a sikeres matekérettségi nem elérhetetlen álom. Ennek az álomnak a eléréséhez egy modern, interaktív tanfolyam a kulcs, amelynek köszönhetően magabiztosan lép be gyermeked a vizsgaterembe.

Miért olyan nehéz a matekérettségi?

A matematika egy különleges tantárgy. Ezt nem elég egyszerűen megtanulni, mint a történelmi évszámokat vagy a nyelvtani szabályokat, a matek megértést és logikai gondolkodást igényel. Ráadásul a tananyagok egymásra épülnek: ha valahol hiányosságok alakulnak ki, azok később komoly gondokat okozhatnak. S mindezt tetézi az is, hogy az érettségi komplex és változatos, gondolkodást igénylő feladatokat tartalmaz.

Az érettségire való felkészülés időigényes, és sokszor nem elég az iskolai órákon megszerzett tudás. Az otthoni gyakorlás kulcsfontosságú, de gyakran nehéz elindulni. Honnan tudhatná gyermeked, melyik feladatot kell gyakorolnia, milyen területeken kell még fejlődnie? Itt jön képbe egy jól felépített, interaktív tanfolyam, amely lépésről lépésre vezet a sikeres matekérettségi felé.

Hogyan segít egy interaktív tanfolyam a sikeres matekérettségi elérésében?

Ez az érdekes, interaktív oktatóprogram nemcsak tananyagot biztosít a felkészüléshez, hanem aktív részvételre ösztönöz. Íme néhány dolog, hogyan támogatja a sikeres matekérettségire felkészülést:

1. Automatikus javítás és részletes levezetés

Az interaktív tanfolyam egyik legnagyobb előnye, hogy azonnali visszajelzést kapnak a diákok. Ha a tanuló beírja a válaszát, a rendszer automatikusan kijavítja, és részletes magyarázatot is ad, nemcsak a végeredményt közli. Így megtudja a gyermeked: ha hibázott, hol hibázott, és azt is, hogyan kell helyesen megoldani a feladatot. Ezáltal a feladatmegoldás megértése mellett, az oda vezető út logikáját, lépéseit is megtanulja.

online matektanulás

Az online, interaktív oktatóprogramban található videók és tesztek segítségével szórakoztatóbbá és könnyebben érthetővé válik a matek. Az interaktív tanulási élmény lehetőséget ad arra, hogy saját tempójában haladjon, és addig gyakoroljon gyermeked, amíg teljesen magabiztos nem lesz.

GOMATEK interaktív tanfolyam középiskolásoknak

3. Elérhetőség bárhol, bármikor

Egy online oktatóprogram, tanfolyam legnagyobb előnye, hogy nincs helyhez és időhöz kötve a gyermeked. Akár otthon, akár útközben is gyakorolhat, és akkor tanulhat, amikor a legjobban tud koncentrálni. Ez különösen hasznos lehet a diákok zsúfolt napirendje miatt.

GOMATEK matek tanfolyam, 11. évfolyam

4.  Önbizalomnövelő tanulási módszer a sikeres matekérettségiért

A feladatok megoldása során apróbb részkérdésekre kell válaszolni. Ezáltal a nehezebb feladatok is könnyebbnek tűnnek, rögtön megszelídülnek és bátrabban nekifognak a tanulók. Minden helyesen megválaszolt kérdés után pozitív visszajelzést kap a gyermeked, így a korábban megtépázott önbizalma újra megerősödik.

Komplex matek kurzus 9. évfolyam

A GOMATEK interaktív oktatóprogram pontosan így lett összeállítva. Bármilyen szinten áll is a középiskolás gyermeked sikeres matekérettségit tehet a segítségével.

Mitől más a matekérettségi, és hogyan készüljön rá gyermeked, hogy sikeres legyen?

Mivel a matek gyakorlati tantárgy, egészen más tanulási módszert igényel, mint a többi iskolai tárgy. Itt nem elég csak elolvasni a tankönyvet, és bemagolni a képleteket, bár feltétlenül szükséges érteni az összefüggéseket. Ahhoz, hogy sikeres matekérettségit tegyen gyermeked, fontos, hogy alaposan megismerje a vizsgakövetelményeket, és lépésről lépésre haladjon a felkészüléssel. Az elméleti tudás megszerzése után pedig rengeteg gyakorlással elsajátítsa a feladatok önálló megoldásának a képességét is.

Sok diák éppen az érettségi előtt szembesül azzal, hogy a matekot nem elég érteni, hanem bizony a feladatokat kell tudni jól megoldani. Főleg azok számára jelenthet ez kihívást, akik korábban nem szokták meg, hogy az önálló feladatmegoldás megtanulásával érhetnek el sikereket matekból. Ennek a hiányosságnak a pótlásában egy interaktív tanfolyam nagy segítséget nyújthat.

Miért válaszátok a GOMATEK tanfolyamot a sikeres matekérettségi érdekében?

2024-től a matekérettségi feladattípusaiban változás következett be. Új feladattípusok kerülnek elő, míg bizonyos régi kérdések kikerülnek vagy kisebb súllyal szerepelnek a vizsgán. Ez azt jelenti, hogy nem elég a korábbi évek feladatsorait megnézni, gyakorolni kell az új feladattípusokat is. A GOMATEK oktatóprogram folyamatosan frissül, minden hónapban újabb feladatokkal bővül, és az új követelményekhez igazítva készít fel a vizsgára.

A használatával a sikeres matekérettségi kézzel fogható valóság lehet, mert ezzel a tanulási módszerrel megtanulhat gyermeked is magabiztosan feladatokat megoldani. A GOMATEK interaktív tanfolyam, mint modern oktatóprogram, nemcsak egyszerűbbé és érthetőbbé teszi a tanulást, hanem élvezhetőbbé, érdekesebbé is.

Ne várjatok az utolsó pillanatig, hanem kezdjen bele még ma a felkészülésbe gyermeked! Hozza ki magából a maximumot, és lépjen be a vizsgaterembe magabiztosan, tudva, hogy mindent megtett a sikeres matekérettségiért.

Nagy Éva középiskolai matektanár, matek korrepetálás

Éva

GOMATEK

Rendszeres gyakorlás

Rendszeres gyakorlás

A matektanulás titkos fegyvere: a rendszeres gyakorlás

Sokszor lehet hallani, hogy a matematika nagyon nehéz tantárgy. Pedig a matekos siker kulcsa egyszerű: a rendszeres gyakorlás. Ebben a blogbejegyzésben megmutatom, hogy miért olyan fontos a matematika feladatok megoldásának gyakorlása.

A matek olyan, mint egy sport: a gyakorlás teszi a bajnokot!

Emlékszel még milyen volt, amikor egy új sportágat próbáltál ki? Mielőtt nekikezdtél volna, az edződ elmagyarázta a szabályokat, tanácsokkal látott el, megmutatta, hogyan használd a sportszereket. Ezután a beszélgetés után elméletben mindennel tisztában voltál.

De vajon csak az elméleti tudás birtokában már profi sportoló lettél? Természetesen nem! Sőt eleinte elég ügyetlenül mozogtál a pályán, teremben, medencében. Az elméleti tudás nem elég! Az igazi fejlődéshez rengeteg gyakorlásra van szükség.

A matek olyan, mint egy sport: a gyakorlás teszi a bajnokot!

Az is kevés, ha csak lejársz és nézed, hogy mások, hogy és mint edzenek, játszanak, fejlődnek. A te tudásod, képességed, ettől sajnos még nem fog növekedni. Ahhoz, hogy te is jobb legyél sok munkára, befektetett időre van szükség. Nem lehet megspórolni a gyakorlást. Vagyis, ha megspórolod a sportban a rendszeres gyakorlást, akkor nem jön az eredmény, és elkeseredsz, majd feladod.

Miért nem elég csak az órán figyelni?

A matektanulással is hasonló a helyzet. Az órán a tanár elmagyarázza a fogalmakat, a tételeket és a megoldási módszereket. Az első nagyon fontos lépés ez, az új ismeret megszerzése, megértése. De a matematika egy gyakorlati tantárgy, nem elég elméletben tudni az anyagot, alkalmazni is tudni kell azt. Vagyis meg kell tudni oldani önállóan új, ismeretlen feladatokat.

Az is igaz azonban, hogy feladatokat megoldani elméleti ismeretek nélkül nagyon nehéz, szinte lehetetlen. Az érettségin és a dolgozatokban kapott feladatok megoldása korábban megtanult ismeretek, nélkül adott időn belül nagyon nehezen fog menni.

matek interaktív oktatóprogram

Sikereket elérni matekból a megtanult tananyag begyakorlásával lehetséges. Ez pedig időigényes, és sok kitartást, szorgalmat igénylő munka. Cserébe viszont fejlődik számos készség, ami az élet különböző területein észrevétlenül hasznosulnak. A matekfeladatok gyakorlásával pl. fejlődik a logikus gondolkodás, a problémamegoldó képesség.

Miért olyan fontos a gyakorlás matekból?

Elsősorban, illetve rövid távon azért, mert a matek dolgozatokban, és az érettségin is az önálló matek feladatmegoldást mérik fel. Vagyis nem elég csak megnézni, megérteni egy videóból, hogyan kell megoldani egy feladatot, annak a megoldását be is kell gyakorolni.

A matekfeladatok megoldása közben könnyebb rájönni az összefüggésekre, megérteni a definíciókat, tételeket. Olyan ez, mint az élet bármely más területén, ha valamit egyszer-kétszer megcsinálunk, már sokkal jobban fog menni legközelebb.

A feladatok begyakorlásával rutinná válnak bizonyos műveletek, azonosságok, feladatmegoldási lépések. Ezeket sokszor más típusú feladatoknál is lehet majd alkalmazni. Ezáltal pedig könnyebben, gyorsabban és hatékonyabban lehet dolgozni.

Minden egyes új feladat önálló megoldásával növekszik a tanuló önbizalma. Természetesen a vezetett gyakorlás esetén igaz ez. Vagyis egy megfelelő ütemterv szerint kell haladni, és a tanuló tudásszintjének megfelelő feladatokkal kell kezdeni a gyakorlás. Majd fokozatosan pótolni a hiányosságokat, illetve egyre nehezebb feladatok megoldásával eljutni a kitűzött célhoz. Ezen az úton nagy segítség lehet egy matek mentortanári támogatás.

A rendszeres gyakorlásnak van még egy nagy előnye, méghozzá az, hogy jobban rögzülnek a feladattípusok megoldási módjai. A matekfeladatok gyakorlásának köszönhetően hosszú távon is jobban megmaradnak a tanultak, és könnyebben elő is hívhatók az érettségire készüléskor.

Ha kipróbálnátok egy interaktív videókból és interaktív feladatlapokból álló gyakorlási lehetőséget, akkor hajrá! Az ingyenes leckék megmutatják, melyik módszer a leghatékonyabb a matek feladatok begyakorlásában. Egy érdekes tanulási módszert ismerhet meg a gyermeked, aminek rendszeres használatával fejlődik az önálló feladatmegoldó képessége.

Nagy Éva középiskolai matektanár, matek korrepetálás

Éva

GOMATEK

Pitagorasz tétel feladatok és megoldások

Pitagorasz tétel feladatok és megoldások

Pitagorasz tétel feladatok és megoldások tippekkel

A Pitagorasz tétel egy olyan alapvető matematikai összefüggés, amely egyszerűsége ellenére is sok diáknak okoz fejtörést. Ha te is közéjük tartozol, akkor neked szól ez az írás, amiben Pitagorasz tétel feladatok és megoldások levezetését nézheted meg.

A Pitagorasz tételt sokan úgy emlegetik, hogy „a négyzet meg b négyzet egyenlő c négyzet”. De ez csak akkor igaz, ha a derékszögű háromszög két befogója a és b, az átfogója a c.

Derékszögű háromszög oldalainak megkülönböztetése

Több diáknak problémát okoz eldönteni, hogy a derékszögű háromszögnek melyik oldala a befogó és melyik az átfogó. Hogy neked ez ne okozzon fejtörést, most segítek ebben. Először is meg kell keresned a derékszöget a háromszögben. Ha ez megvan, akkor a vele szemközti oldal lesz az átfogó, hiszen az van átellenben, azaz szemben. Ebből pedig egyértelmű, hogy a másik két oldal a befogó.

Hogyan írd fel helyesen a Pitagorasz tételt?

Miután eldöntötted, melyik oldal az átfogó emeld négyzetre és tegyél utána egyenlőségjelet. Az egyenlőségjel másik oldalára írd le a másik két oldalnégyzetét és add össze. Már kész is. Most jöhetnek a konkrét feladatok és megoldásaik.

Gyakorlati Pitagorasz tétel feladat és megoldás

Feladat: Egy 5 méter hosszú létrát a falnak támasztottak. A létra alja 1,2 méterre van a faltól. Milyen magasra ér fel a létra a falon?

Megoldás: Először is ábrát készítünk, bejelöljük a derékszöget és kiírjuk az adatokat. Szándékosan nem a-val, b-vel és c-vel jelöltem az oldalakat, mert sok feladatban nem ezeket a jelöléseket alkalmazzák. Megállapítjuk, hogy az átfogó a z oldal, az x és y a két befogó. Ismerjük a létra hosszát, amit z-vel jelöltünk, és a talpának a faltól való távolságát az y-t. Most felírhatjuk Pitagorasz tételt és behelyettesítés után kiszámolhatjuk az x-et, azaz, hogy milyen magasra ér a létra a falon.

Pitagorasz tétel feladatok és megoldások tippekkel

Szöveges feladatot mindig válasszal fejezzük be. A válasz: A létra 4,85 m magasra ér fel a falon.

Kicsit nehezebb Pitagorasz tétel feladat és megoldása

Feladat: Egy derékszögű háromszög egyik befogója 2 cm-rel hosszabb a másiknál. Az átfogó 10 cm. Hány cm hosszúak a befogók?

Megoldás: Az előző ábrát használhatjuk itt is, De úgy tűnik, hogy két ismeretlenünk van, hiszen konkrétan csak a z-vel jelölt átfogót ismerjük. A befogókról csak azt tudjuk, hogy az egyik 2 cm-rel hosszabb, mint a másik. Ilyenkor jó ötlet, ha a rövidebb befogót jelöljük egy betűvel, mondjuk most maradjon y. A hosszabb befogó ettől 2 cm-rel több, ez azt jelenti, hogy a másik befogó y+2. Ez a trükk azért segít a feladat megoldásában, mert már nem két, hanem csak egy ismeretlen betű van a példában.

Most már felírhatjuk Pitagorasz tételt, figyelve arra, hogy az egyik oldal hossza egy összeg. Ha összeget kell négyzetre emelni, nem szabad elfelejtkezni a zárójelről, és arról, hogy ez egy nevezetes szorzat.

Pitagorasz tétel megoldás

A keletkezett másodfokú egyenletet megoldva két megoldást kapunk, 6-ot és -8-at. Természetesen egy háromszög oldala nem lehet negatív, vagyis csak egy megoldás van. A derékszögű háromszög rövidebb befogója 6 cm, a hosszabb ettől 2 cm-rel több, azaz 8 cm. Ellenőrizhetjük is a megoldásunkat. Az a háromszög, amelynek két rövidebb oldala 6 és 8 cm, a hosszabb pedig 10 cm tényleg derékszögű. Ezek a számok Pitagoraszi számhármasok.

Ha gond van a matekkal akkor itt egy kis ingyenes segítség.

Nagy Éva középiskolai matektanár, matek korrepetálás

Éva

GOMATEK

Derékszögű háromszög

Derékszögű háromszög

Derékszögű háromszög: Minden, amit tudni kell a területéről, kerületéről és magasságáról

A derékszögű háromszög az egyik legismertebb olyan geometriai alakzat, amellyel a matematikán kívül a mindennapi életben is találkozunk. Építészeten a navigációs problémák megoldásán vagy a számítógépes grafikán kívül is számos területen alkalmazunk derékszögű háromszögeket. Pitagorasz tétel gyakorlati alkalmazásának, a derékszögű háromszög tulajdonságainak az ismerete elengedhetetlen a különböző mérésekhez, számításokhoz.

A derékszögű háromszög a navigációban

A derékszögű háromszögnek fontos szerepe van a vízi, légi vagy akár földi navigáció során. Ezekből a háromszögekből Pitagorasz tétel és szögfüggvények segítségével pontosan meghatározhatók a távolságok és a szögek. Ezekhez az életből vett példákhoz hasonló pedig bármikor szerepelhet a matematika érettségin.

Derékszögű háromszög oldalai

A derékszögű háromszög oldalait megkülönböztetjük. A leghosszabb oldal, ami a derékszöggel szemben van az átfogó. A derékszög két szára a befogó. Ez a két oldal egymásra merőleges, vagyis az egyik befogó a másik befogóhoz tartozó magasság.

Mint minden háromszög esetében a derékszögű háromszög kerülete is a három oldal hosszának az összege.

Háromszögek területe

Területét is ugyanúgy számoljuk ki, mint bármelyik háromszögnek a területét. Az egyik oldal és az ahhoz tartozó magasság szorzatának a fele. Mivel a két befogó egymáshoz tartozó magasság, ezért a derékszögű háromszög területe a két befogó szorzatának a fele.

A trigonometrikus területképlet is alkalmazható úgy, hogy az átfogót az egyik befogót, az általuk bezárt szög szinuszát összeszorozzuk és elosztjuk kettővel.

Derékszögű háromszög kerülete, területe feladat

Feladat: Egy derékszögű háromszög területe 24 területegység, az egyik befogója 6 egység hosszú. Mekkora a háromszög kerülete?

Megoldás: A háromszög kerületének a kiszámolásához mind a három oldal hosszát ismerni kell. A területből az egyik befogó segítségével a másik befogó könnyen kiszámolható. Az átfogót ezek után Pitagorasz tétel segítségével lehet meghatározni.

Derékszögű háromszög

Derékszögű háromszögek más síkidomokban

Matek feladatok megoldása közben gyakran bontunk más síkidomokat kisebb derékszögű háromszögekre. A derékszögű háromszögek szögeit, oldalait ugyanis szögfüggvények, illetve Pitagorasz tétel használatával már könnyen meg tudjuk határozni.

Milyen síkidomokban fordulnak elő derékszögű háromszögek?

A négyzeteket és téglalapokat az egyik átlójuk berajzolásával feloszthatjuk két egybevágó, derékszögű háromszögre.

A rombusz átlói merőlegesen felezik egymást, tehát itt is vannak derékszögű háromszögek.

A deltoid szimmetriaátlója merőlegesen felezi a másik átlót, ezáltal szintén derékszögű háromszögek keletkeznek.

A paralelogrammánál a csúcsból a szemközti oldalra állított merőleges, azaz a magasságvonal berajzolásával kapunk ilyen háromszöget.

A trapéz esetében pedig a rövidebb alap végpontjából a másik alapra állított merőleges segítségével lesz derékszögű háromszög

Szabályos sokszögek egyenlő szárú háromszögekre bonthatók, ezeket az alaphoz tartozó magasság két derékszögű háromszögre bontja.

Derékszögű háromszögek testekben

Ha a testeket sokszöglapok határolják, akkor az előbb említett módon készíthetünk derékszögű háromszögeket. Valamint a gúláknál a csúcspontból az alap síkjára állított merőleges segítségével is keletkezik ilyen háromszög.

Ha szeretnéd elmélyíteni a tudásod és gyakorolni a számításokat, a GOMATEK tanfolyamaiban számos interaktív feladatot találsz. A játékos feladatokkal könnyedén elsajátíthatod a derékszögű háromszögek területének és kerületének kiszámítását. Fedezd fel a geometria szépségét a GOMATEK interaktív oktatóprogrammal.

Nagy Éva középiskolai matektanár, matek korrepetálás

Éva

GOMATEK

Kombinatorika érettségi feladatok megoldással

Kombinatorika érettségi feladatok megoldással

Kombinatorika érettségi feladatok megoldással

Kombinatorikai feladatokkal már általános iskolában is találkoznak a diákok, majd középiskolában minden évben előjönnek ezek a feladattípusok. Az érettségin is mindig van egyszerűbb, illetve összetettebb kombinatorikai feladat, és a valószínűségszámítás feladatokat is nehéz kombinatorikai ismeretek nélkül megoldani. Ebben a cikkben kombinatorika érettségi feladatok megoldással kerülnek bemutatásra.

Kombinatorika alapfogalmai

A kombinatorika alapfogalmairól, köztük lévő különbségekről, a képletekről korábban már írtam. Olvasd el először ezt az írást, hogy megtudd, mi a különbség a permutáció, variáció és kombináció között. Ha az elmélettel tisztában vagy akkor jöhetnek a feladatok.

Egyszerű kombinatorika érettségi feladatok megoldással

1. feladat

A 32 lapos magyar kártyában négy szín (piros, zöld, tök, makk), és minden színből nyolcféle lap van (VII, VIII, IX, X, alsó, felső, király, ász). Hányféleképpen tudunk a 32 kártyából egyszerre 3 lapot kihúzni úgy, hogy a piros ász köztük legyen?

Megoldás: Mivel a kiválasztott lapok között ott kell lennie a piros ásznak, azt mindenképpen ki kell húznunk. Hogy ezt meg tudjuk tenni válasszuk külön a lapokat. Az egyik csoportba kerül a kiválasztandó piros ász, a másik csoportba a többi 31 lap. A piros ászt mivel egyedül van, ezért egyféleképpen lehet kiválasztani. Ehhez kell még 2 lapot kihúzni a maradék 31 lapból. Itt most csak kiválasztunk, a sorrend nem számít. Ezt a két lapot 31 alatt a 2 féleképpen húzhatjuk ki. Ezt az eredményt kell megszorozni azzal az eggyel, ahányféleképpen a piros ászt választhatjuk ki. Az eredmény 465.

Egyszerű kombinatorika érettségi feladatok megoldással

2. feladat

Négy gombóc fagylaltot vásárolunk tölcsérbe: egy csokoládét, egy vaníliát, egy puncsot és egy eperízűt. Hányféle olyan sorrendje lehetséges ennek a négy gombócnak, amelynél nem a csokoládé a legalsó?

Megoldás: Mivel az alsó gombóc nem lehet csoki, ezért oda három másikból választhatunk háromféleképpen. Mind a négy gombócból kell venni, ismétlődni nem ismétlődnek a gombócok. Valami tehát került alulra, ami nem csoki, a többi három helyre (3.; 2.; 1.;) a maradék három fagyit kell sorba rendezni. Három elemet 3! azaz 6 féleképpen lehet sorba tenni. Ezt az eredményt kell még megszorozni azzal a 3 lehetőséggel, ahányféleképpen a legalsó íz választható ki. Vagyis összesen 18 féle sorrendje lehet a megadott feltételek mellett a gombócoknak.

Kombinatorika érettségi feladatok

3. feladat

Egy futóverseny döntőjébe hat versenyző jutott, jelöljük őket A, B, C, D, E és F betűvel. A cél előtt pár méterrel már látható, hogy C biztosan utolsó lesz, továbbá az is biztos, hogy B és D osztozik majd az első két helyen. Hányféleképpen alakulhat a hat versenyző sorrendje a célban, ha nincs holtverseny? Válaszát indokolja!

Megoldás: Az utolsó helyen C egyféleképpen végezhet. Az első két hely valamelyikén B és D osztozhat kétféleképpen. Vagy a B az első és D a második, vagy pedig fordítva. A harmadik, negyedik, ötödik helyen A, E és F osztozik. Három embert 3!=6 féleképpen lehet sorba rendezni. Ezt megszorozva kettővel 12 féleképpen érhetnek célba a megadott feltételek mellett a versenyzők.

Összetettebb érettségi feladatokban kombinatorika

Az érettségi második részében szereplő nehezebb feladatok szinte mindig több részből állnak. Legtöbb esetben ezek az alkérdések még csak nem is ugyanahhoz a feladattípushoz tartoznak.

Ez nagyon vizsgázóbarát, hiszen, ha egy részét nem tudja a diák a feladatnak, attól a másik témakörhöz tartozó feladat még sikerülhet.

Többször előfordult már, hogy a kombinatorika érettségi feladatok a második részben halmazokkal, statisztikával vagy valószínűségszámítással vannak összekapcsolva. Vagyis nem egy adott témakör pl. a kombinatorika egy hosszabb, összetettebb feladatát kell megoldani, hanem két-három egyszerűbb feladatot.

Ha szeretnél még egy kicsit gyakorolni, akkor ezt a játékot javaslom.

Ha eddig nem voltál elég sikeres matekból, akkor próbáld ki ezt az új módszert ingyen.

Vagy inkább rendszeres és konkrét segítségre van szükséged, akkor a GOMATEK tanfolyamaival fejlődhetsz.

Nagy Éva középiskolai matektanár, matek korrepetálás

Éva

GOMATEK

Függvények érettségi feladatok

Függvények érettségi feladatok

Függvények érettségi feladatok: Mire számíthatsz?

A függvények ábrázolása, jellemzése a matematika érettségi egyik fontos témaköre. Függvények érettségi feladatok a néhány pontos és az összetettebb vizsgafeladatok között is szerepelhetnek.

Köztudott, hogy 2024 májusától sokat változott a matek érettségi követelménye is. Ez azt is jelenti, hogy bizonyos függvények ábrázolása és jellemzése kikerült a számon kérhető anyagok közül. Hogy pontosan milyen függvények érettségi feladat fordulhat el a matekérettségin már korábban írtam. Olvasd el azt is, ott inkább felsorolom és részletezem a változásokat: mi kell, mi került ki, milyen típusfeladatok várhatók. A mostani blogcikkben pedig elsősorban konkrét feladatokat nézünk meg, természetesen megoldással együtt.

Függvények egyszerű érettségi feladatok

Az érettségi első részében szinte mindig van néhány pontért egy függvényes feladat. Ezekben a feladatokban sokszor kell ábráról meghatározni a függvény hozzárendelési szabályát, vagy bizonyos tulajdonságait. Illetve fordítva is lehet érettségi feladat, amelyben a hozzárendelési szabályból kell függvényábrát készíteni vagy valamilyen tulajdonságot, pl. zérushelyet kell meghatározni.

Első érettségi feladat függvények témakörből

Ábrázolja az f(x)=0,5x-4 függvényt a [-2;10] intervallumon!

Ez egy korábbi érettségin volt feladat 2 pontért. Amikor függvényt kell ábrázolni, akkor mindig van egy nyomtatott négyzetrácsos rész, ahol az ábrát készítheted. Figyelj rá, hogy általában nincs több ilyen rész tehát, ha tollal elrontod a rajzot nem igazán lesz helyed kijavítani. Az érettségin lehet az ábrákat, rajzokat ceruzával készíteni, ez itt a függvények ábrázolásánál különösen fontos. Bátran készítheted az ábrát ceruzával, arra azonban ügyelj, hogy utána válts vissza tollra. Ha az ábrázoláson kívül valamit kérdez a feladat, akkor azt mindenképpen tollal kell már beírni a megadott helyre.

Most pedig ábrázold a függvényt, aztán pedig ellenőrizd, hogy jól dolgoztál-e. Ebben a videóban megnézheted a feladat megoldását, de csak, ha már ábrázoltad (legalább fejben).

Második függvények érettségi feladat

A valós számok halmazán értelmezett f(x)=5x-3 függvény grafikonja a P pontban metszi az x tengelyt. Adja meg a P pont első koordinátáját!

Az x tengely minden pontjának második, azaz y koordinátája 0. Az f függvény egy elsőfokú függvény, aminek a képe egyenes. A két egyenes metszi egymást, tehát van közös pontjuk. A metszéspont második koordinátája 0. Visszahelyettesítve az f(x)=y helyére a függvény hozzárendelési szabályába, egy elsőfokú egyenletet kapunk, aminek a megoldása a P metszéspont első koordinátája.

elsőfokú egyenlet megoldása

A P metszéspont első koordinátája tehát 0,6.

Harmadik egyszerű függvényes érettségi feladat

Az ábrán egy a [0;4] zárt intervallumon értelmezett függvény grafikonja látható. Válassza ki a felsoroltak közül a függvény hozzárendelési szabályát!

függvények érettségi feladat

Megoldás: Az ábrán egy parabola grafikonja látszik a megadott intervallumon. A megadott válaszok mindegyike másodfokú függvény hozzárendelési szabálya, szóval ez nem szűkíti a lehetséges megoldások számát. Az ábrán látjuk, hogy a parabola tengelypontja nem az origóban van, hanem  (2; -1) pontban. Ez azt jelenti, hogy az x tengely mentén jobbra 2-vel, az y tengely mentén lefele 1-gyel toltuk el az alapfüggvényt. Az x tengely mentén történő eltolás a hozzárendelési szabályban a zárójelen belül jelenik meg, de mínusz eggyel megszorozva. Vagyis a zárójelen belül -2 van. Tehát csak az A vagy B válasz lehet a jó. Az y tengelyen az eggyel lefelé eltolás a hozzárendelési szabályban a zárójelen kívül jelenik meg. Vagyis a B lesz a helyes válasz.

Összetett függvények érettségi feladat

Az érettségi második, azaz több pontos részében is lehetnek olyan feladatok, amikben függvényekről van szó. Általában ezek egy nagyobb, összetettebb feladat részkérdéseiként jelennek meg.

Ha szeretnéd megnézni, hogy milyen összetett függvények érettségi feladat volt már egy korábbi vizsgán, akkor nézd meg a videót, amiben a feladat megoldását mutatom be.

Talán tapasztalatból, talán a korábbi kommunikációmból tudod már, hogy csak megnézni egy matek feladat megoldását nem elég. Ekkor ugyanis, még csak megérted a feladatot, de még nem gyakoroltad be. Ha a megértés mellett az évfolyamodnak megfelelő feladatok önálló megoldását is szeretnéd elsajátítani, akkor a GOMATEK interaktív tanfolyamokkal ezt könnyen megteheted.

Ha eddig nem voltál elég sikeres matekból, akkor próbáld ki ezt az új módszert ingyen.

Nagy Éva középiskolai matektanár, matek korrepetálás

Éva

GOMATEK

Szinusztétel feladatok megoldással

Szinusztétel feladatok megoldással

Szinusztétel feladatok megoldással

kis segítség matekból középiskolás gyermekednek

A diákok miután megtanulták a középiskolában a tompaszögek, illetve a derékszög szinuszát kiszámolni megismerkednek a szinusztétellel is. Sokakat már a tétel szó frusztrál, és leblokkol, mielőtt nekilátna a szinusztétel feladatok megoldásának. Pedig nem is nehéz ez, mutatok két példát megoldással együtt szinusztételes feladatokról. Valamint egy videót is belinkelek  illetve egy interaktív játékkal is gyakorolhat gyermeked.

Hogyan nem lehet szinusztétel feladatokat megoldani?

Biztos a te gyermekednek is segítség az, ha valaki elmagyarázza egy-két példán keresztül matekból a számára nehezebben érthető részeket. Egy matekfeladat megoldásához nélkülözhetetlen az elméleti anyag ismerete, és az erre épülő korábbi tananyagban való jártasság. Ezek nélkül, illetve egy számológép, valamint írásra alkalmas akár digitális eszközök nélkül ne üljön le szinusztételről szóló feladatokat megoldani. Fejben, számológép nélkül az interaktív játékhoz sem célszerű hozzáfogni.

Mi az a szinusztétel?

A szinusztétel azt mondja ki, hogy egy háromszögben két oldal aránya és a velük szemközti megfelelő szögek szinuszának aránya megegyezik.

Ezt az arányt a következőképpen is megfogalmazhatjuk. Egy oldal és a vele szemben lévő szög szinuszának aránya megegyezik egy másik oldal és az azzal szemközti szög szinuszának arányával.

A szinusztételt nem derékszögű háromszögekre alkalmazzuk elsősorban. Természetesen lehet derékszögű háromszög esetében is használni, de ott szögfüggvényekkel könnyebb, gyorsabb számolni.

Mikor alkalmazhatjuk a szinusztételt?

A szinusztételt akkor célszerű alkalmazni, amikor a háromszög két oldalát adta meg a feladat és az egyikkel szemben fekvő szöget. Ekkor szinusztétellel ki lehet számolni a másik adott oldallal szemközti szöget. A háromszög két szögének ismeretben a harmadik szög kiszámolható, hiszen tudjuk, hogy a háromszögek belső szögeinek az összege 180 fok.

Illetve akkor is alkalmazható a szinusztétel, amikor ismerjük a háromszög két szögét és az egyik oldalát. Ekkor könnyen meg tudjuk mondani a harmadik szög nagyságát. Ezután pedig az adott oldal és a vele szemközti szög szinuszának aránya egyenlő egy keresett oldal és a vele szemközti szög szinuszának az arányával.

Egyszerű szinusztétel feladat megoldással

Feladat: Egy háromszög két oldala 8 cm és 12 cm, a 8 cm-es oldallal szemben 40 fokos szög van. Mekkora a háromszög többi szöge?

Megoldás: Mivel nem derékszögű a háromszög, ezért nem szögfüggvényt alkalmazunk a feladat megoldása során. Két oldal és az egyikkel szemközti szög ismert, tehát szinusztétellel tudjuk megoldani a példát. Azaz a 8 cm-es oldal és a vele szemközti szög szinusza egyenlő a 12 cm-es oldal és a vele szemközti oldal szinuszával.

Miután ezt az egyenlőséget felírtunk keresztbe szorzunk és egy osztással megkapjuk a keresett szög szinuszát. Ebből számológépen visszakereséssel megvan a szög is. Arra figyelni kell, hogy akár tompaszögű is lehet a háromszög, vagyis két megoldásunk lesz. Majd mindkét esetben kiszámoljuk a háromszög harmadik szögét, felhasználva azt, hogy a belső szögek összege 180 fok.

szinusztétel feladat megoldással

Újabb példa

Feladat: Egy háromszög két szöge 50° és 60° a háromszög legkisebb oldala 10 cm. Hány cm a háromszög többi oldala?

Megoldás: Mivel a háromszögnek két szöge ismert, meg tudjuk mondani a harmadik szöget is. Ezt a két szöget kivonva 180 fokból azt kapjuk, hogy a harmadik szög 70°. Tehát a háromszög nem derékszögű. Tudjuk, hogy egy háromszögben a legkisebb oldal a legkisebb szöggel szemben van. Ezeket megadta a feladat, vagyis ismert a háromszög mindhárom szöge és az egyikkel szemközti oldal. Két szinusztételből meg tudjuk mondani a hiányzó oldalakat.

A 10 cm-es oldal és a vele szemközti 50 fokos szög szinusza egyenlő az egyik keresett oldal és a vele szemközti (mondjuk) 60 fokos szög szinuszával. Az egyenlet mindkét oldalát megszorozva a 60 fokos szög szinuszával, már meg is kapjuk a keresett oldalt. A harmadik oldal az képen látható módon szintén egy szinusztételből számolható, az előzőhöz hasonlóan.

szinusztétel feladatok megoldással

Hasonló szinusztétel feladat megoldását nézhet meg gyermeked ebben a videóban.

De ha nem csak ebből a feladattípusból lenne szükség állandó segítségre, akkor javaslom a GOMATEK interaktív tanfolyamokból gyakorlás. Itt ugyanis nemcsak megnézi, hogy más hogyan csinál meg is egy feladatot, hanem megtanul önállóan megoldani feladatokat. Ha még nem tettétek, akkor próbálja ki itt ingyen gyermeked. De persze ez sem való mindenkinek, csak a céltudatos, önállóan dolgozni akaró diákoknak. 

Nagy Éva középiskolai matektanár, matek korrepetálás

Éva

GOMATEK

Valószínűségszámítás feladatok

Valószínűségszámítás feladatok

Valószínűségszámítás feladatok

A valószínűségszámítás a matematikának az a területe, amely a véletlen események bekövetkezésének mértékét vizsgálja. A klasszikus valószínűségszámítást gyakran használjuk egyszerű véletlen kísérletek valószínűségének kiszámítására. Ebben a bejegyzésben a klasszikus valószínűségszámítás alkalmazását mutatom be. Illetve példákon keresztül szemléltetem, valószínűségszámítás feladatok megoldását.

A véletlen jelenségek kimenetelei, bekövetkezései az elemi események. A klasszikus valószínűségszámítás akkor alkalmazható, amikor a kísérlet összes kimenetele, vagyis az elemi események egyformán valószínűek. Sok valós életből vett helyzetben ez a feltétel nem teljesül, ezért ott más valószínűségi modelleket kell használni.

Mi a valószínűség?

A valószínűség azt fejezi ki, hogy egy bizonyos esemény mekkora eséllyel következik be. Más szavakkal, egy számmal jellemezzük, hogy mennyire valószínű, hogy egy kísérlet adott kimenetelű lesz. A valószínűség értéke egy egynél nem nagyobb pozitív szám. Egy a valószínűsége a biztos eseménynek és nulla a valószínűsége a lehetetlen eseménynek.

A klasszikus valószínűség

A klasszikus valószínűséget úgy számoljuk ki, hogy a kedvező esetek számát elosztjuk az összes eset számával. Ez az érték lesz az esemény valószínűsége. Az eseményeket nagy betűvel szoktuk jelölni, mint a halmazokat pl. A, B. A valószínűséget P-vel és utána zárójelbe beírjuk, hogy melyik eseményről van szó, tehát az A esemény valószínűségét így írjuk le: P(A).

A kedvező esetek azok az esetek, amikor az A esemény bekövetkezik, ennek a száma k. Az összes esetet, ahogy a nevében is benne van, az összes lehetséges eset, ami bekövetkezhet, ezt általában n-nel jelöljük.

Összetettebb, bonyolultabb feladatoknál, a kedvező esetek, illetve az összes eset számának kiszámolásához kombinatorikai ismeretre lehet szükség. A kombinatorikáról itt készítettem egy magyarázó, segítő blogbejegyzést. Olvasd el ezt is!

Valószínűségszámítás feladatok a mindennapi életből

1. feladat: Egy városban 20 cég van. Ezek közül 12 legalább 30 főt foglalkoztat, míg 8 cégnél 30-nál kevesebb alkalmazott van. Egy egyetemi hallgató ezek közül a cégek közül választ magának véletlenszerűen gyakorlati helyet (mindegyik cég szívesen látná gyakornokként). Mennyi annak a valószínűsége, hogy a kiválasztott cégben 30-nál kevesebben dolgoznak?

Megoldás: Az esemény az, hogy a kiválasztott cégben 30-nál kevesebben dolgoznak. Az összes eset, annyi ahányféleképpen ki lehet választani a 20 cég közül 1-et, ez pedig 20. A kedvező esetet úgy fogalmazhatjuk meg, hogy hányféleképpen lehet a 20 cég közül kiválasztani egyet, ahol 30-nál kevesebben dolgoznak. Mivel 8 ilyen cég van, ezért a kedvező esetek száma k=8. Az A esemény valószínűsége: P(A)=k/n=8:20=0,4. Vagyis annak a valószínűsége, hogy ez az egyetemista egy 30 főnél kevesebb alkalmazottat foglalkoztató cégnél lesz gyakornok 0,4.

valószínűségszámítás feladat

Most nézzünk egy kicsit nehezebb valószínűségszámítás feladatot

2. feladat: Egy focicsapatban 21 játékos van: 2 kapus, 8 védő és 11 csatár. Mi a valószínűsége annak, hogy véletlenszerűen kiválasztott 2 játékos közül legfeljebb az egyik védő?

Megoldás: Az A esemény most az, hogy a kiválasztott 2 játékos közül legfeljebb az egyik védő. Ez azt jelenti, hogy vagy nulla, vagy egy védőt választunk ki. Az összes esetet úgy fogalmazhatjuk meg, hogy hányféleképpen lehet 21 játékosból 2-t kiválasztani. Ez egy ismétlés nélküli kiválasztás, ahol a sorrend nem számít. Tehát kombinációval lehet kiszámolni, az értéke n=210.

A kedvező eset, hogy hányféleképpen tudunk a 21 játékosból kettőt kiválasztani, hogy közülük legfeljebb az egyik védő legyen. Ezt is kombinációval számolhatjuk ki, két részre bontva. Először számoljuk ki azt, hogy hányféleképpen tudunk úgy kiválasztani két embert, hogy egyik sem védő. Ekkor a 13 nem védő közül kell 2-t választani, ez 78. 

Most számoljuk ki hányféleképpen lehet úgy két játékost választani, hogy az egyik védő legyen, a másik nem. Ebben az esetben a 8 védő közül egyet nyolcféleképpen és a 13 nem védő közül egyet 13-féleképpen lehet kiválasztani.  Az és szó arra utal, hogy egyszerre kell mindkettőnek teljesülni, vagyis össze kell szorozni a kapott két számot. Tehát 104 lehetőség van 2 embert választani úgy, hogy csak az egyik legyen védő.

A kedvező esetek száma az, amikor 0 vagy 1 védőt választunk. A vagy miatt az előbb megkapott értékeket össze kell adni, azaz k=182.

Annak a valószínűsége, hogy 2 olyan játékost választunk ki, akik közül legfeljebb az egyik védő: P(A)=k/n=182/210

valószínűségszámítás feladat megoldással

Most te jössz! Gyakorold egy kicsit egy játékos feladatban a klasszikus valószínűség kiszámítását.

Ha pedig komolyan veszed a matektanulást, és jó jegyet szeretnél az érettségin, akkor minden témakört be kell gyakorolnod. Ebben segítségedre lesznek a GOMATEK interaktív oktatóprogramjai, amelyekből a középiskolai évfolyamok teljes anyagát be tudod gyakorolni. Megtanulhatsz önállóan feladatokat megoldani az interaktív videók és interaktív feladatlapok használatával. Ezen kívül sok nyomtatható feladatlapot, és az elméletet is le tudod tölteni. Valamint megtanulhatod a számológép használatát is.

Nagy Éva középiskolai matektanár, matek korrepetálás

Éva

GOMATEK

Logaritmus varázsló

Logaritmus varázsló

A Logaritmus varázsló és a titkos kincsek szigete

A logaritmus szinte minden középiskolás életét megnehezíti, megkeseríti. Sokan nem értik, mi ez, és nagyon nehezen tudnak megoldani logartimussal kapcsolatos feladatokat. Ezért a diákok többsége „rosszul van”, ha meglátja a logaritmust. Most hoztam egy mesét a Logaritmus varázslóról. Ebből, ha nem is szereted meg a logaritmust, de legalább látod, lehet így is tálalni a matekot.

Tarts velem egy izgalmas utazásra a Logaritmus varázsló szigetére! Megoldhatod a logaritmusos feladatokat, és közben segítesz megtalálni az értékes kincseket. Készen állsz a kihívásra?

Mese a Logaritmus varázslóról

Volt egyszer a messzi tengeren egy kicsike sziget, amit a Logaritmus varázsló őrzött. A szigeten rengeteg kincs rejtőzött, de csak azok lelhettek rájuk, akik értettek a logaritmusok nyelvén. A hír eljutott egy bátor fiatal kalózhoz, Jack Logarithm-hoz. Jack imádta a matekot, különösen a logaritmusokat, ezért úgy határozott, hogy felkeresi a szigetet és megszerez magának néhány kincset.

Az első próbatétel

Miután Jack hajója kikötött a szigeten, egy óriási, kőből faragott kapu fogadta. A kapu felett ez a felirat állt:

a logaritmus definíciója

Jack tudta azt, hogy a 2-es alapú logaritmus 16 azt a kitevőt jelenti, amire a 2-t emelve 16-ot kapunk. Vagyis a kérdés az, hogy 2-nek hányadik hatványa a16. Hamar kiszámolta, hogy a válasz 4. A kapu kinyílt, és Jack beléphetett.

A logaritmus labirintus

A sziget belseje felé haladva egy félelmetes labirintus bejáratánál találta magát. A falakon számos logaritmusos feladat volt felírva. Jacknek minden feladatot meg kellett oldania, hogy tovább tudjon haladni. (Te meg tudtad volna oldani a feladatokat? Kattints a linkre, és próbáld ki!) A feladatok megoldása belekerült egy kis időbe Jack számára is, de sikeresen kiért a labirintusból.

A kincsek

A labirintus kijáratánál három egyforma láda várt rá. Mindegyik ládán egy-egy feladat volt.

Első láda felirata: „A ládát nyitó kód az a szám, amelyiknek a 10-es alapú logaritmusa 2.”

Második ládán lévő felirat: „A ládát nyitó kód az a szám, amelyiknek a 3-as alapú logaritmusa 4.”

Harmadik ládán pedig a következő felirat állt: „A ládát nyitó kód az a szám, amelyiknek a 2-es alapú logaritmusa 5.”

Jack könnyedén megoldotta mindhárom feladatot, és kinyitotta a ládákat is. (Neked mik lettek a megoldások? 100; 81; 32?) Az első ládában arany pénzérmék csillogtak, a másodikból drágakövek mosolyogtak rá. A harmadikban pedig egy nagyon régi térkép volt, amely egy elrejtett kincshez vezetett.

A végső próbatétel

Természetesen Jack szerette volna ezt a kincset is megszerezni. Így elindult arra, amerre a térkép mutatta. A térkép egy magas sziklabarlanghoz vezetett, amely előtt egy nagy kőgolyó állt. A kőgolyó felett ismét egy felirat volt olvasható: „A kőgolyót csak akkor tudod elmozdítani, ha kitalálod mennyi az x értéke!”

Logaritmus játékosan

Jacknek egy kicsit már törnie kellett a fejét, hogy kiszámolja az x-et, de megtalálta a helyes megoldást. Ha neked ehhez kell egy kis segítség, akkor nézd meg a GOMATEK YouTube csatornáján ezt a videót!

A helyes megoldás megadása után a kőgolyó elgurult, felfedve egy titkos ajtót. Az ajtó mögött egy hatalmas terem volt, tele arannyal és drágakövekkel. Jack nagyon örült, mert megtalálta a Logaritmus varázsló kincseit.

Neked sikerült volna?

A Logaritmus varázsló szigete egy olyan hely, ahol a matematika és a kaland ötvöződik. Remélem, hogy ez a kaland segített neked közelebb kerülni a matekhoz, és felkeltette az érdeklődéseteket a további tanulásra.

Ha te is szeretnéd olyan jól boldogulni a logaritmusokkal, mint Jack Logarithm, és felfedezni a logaritmusok titkait, akkor ne habozz! A GOMATEK interaktív videós tanfolyamai segítségével te is könnyedén elsajátíthatod a logaritmus definícióját is. Kattints ide és kezd el érdekesen a saját kalandodat a matematika világában!

Nagy Éva középiskolai matektanár, matek korrepetálás

Éva

GOMATEK

Nem szeretik a matekot

Nem szeretik a matekot

Miért nem szeretik a diákok a matekot? És szülőként, hogyan változtathatsz ezen?

Szerintem senki sem lepődik meg azon, hogy általában a diákok nem szeretik a matekot. Amikor megkérdezik a diákokat, hogy melyik a kedvenc tantárgyuk, akkor a legritkábban mondják, hogy  a matekot szeretik a leginkább. Sajnos már az általános iskolás diákokra is igaz, hogy nem nagyon szeretik a matekot. Ennek számos oka lehet, és persze ez egyénenként változhat is.

Az unalmas és száraz matekot nem szeretik a tanulók

Ez természetes. Senki nem szeret azzal foglalkozni, ami untatja. Az iskolai matek tananyaghoz nehéz érzelmileg kötődni. Bezzeg a magyar, a töri vagy a művészetek, olyan tantárgyak, ahol lehet filmet nézni, ezért érdekesebb, látványosabb. Biológiából, kémiából még ha ritkán is, de vannak kísérletek, ami szintén izgalmassá teszi a tanórát. Matekból meg csak képletek és számok vannak. Ezekkel a diákok egy része nem tud mit kezdeni.

matektanulás motiválása

Miért unalmas a matek?

Nem minden matek óra unalmas. A matekot is lehet ám érdekesen, változatosan tanítani. De nem úgy, hogy a tanár a táblánál megoldja a feladatot, a diákok pedig lemásolják azt. Ez tényleg unalmas. Nem csodálom, hogy ez nem köti le a diákok figyelmét.

Ha a matek tananyag interaktívan van feldolgozva, akkor az is jobban érdekli majd a diákokat. Az interaktív videókból tanulás, és a kvízek azért is sokkal hatékonyabb, mert a diákok nagyobb kedvvel fognak neki a tanuláshoz. A kérdezve tanítás során válaszolni kell a felmerülő kérdésre, tehát dolgozni, gondolkozni kell. Így nem fognak unatkozni a diákok mert van feladatuk, ami még érdekesen is van tálalva.

Amit nem értesz, azt nem szereted

A matekot sokan nem értik, többek között azért sem, mert sok hiányosságot görgetnek maguk előtt. Ez természetesen frusztráló. Ezért elvesztik az érdeklődésüket, a kedvüket, és egyre kevésbé fognak gyakorolni. Így még nagyobb lemaradást szednek össze, és előbb utóbb rosszabb jegyeket szereznek, végül megutálják a matekot. Pedig a középiskolai matek tananyag bárki számára megérthető. Csak lehet, hogy más módszerrel kellene tanulni, nem úgy, ahogy eddig.

utálják a matekot

Ha a gyermeked az eddigi matek tanulási módszer következtében nem szereti a matekot, akkor mutass meg neki egy másik módszer. Ez az érdekes és hatékony tanulási módszer az interaktív tanulás. Ezzel a fajta matektanulással könnyebben megérti majd a gyermeked a tananyagot matekból, és be is tudja önállóan gyakorolni a feladatok megoldását. Ráadásul a GOMATEK tanfolyamokat úgy állítottam össze, hogy ezen kívül még a gyermeked önbizalmát is növelje. Így folyamatos sikerélményhez jut, aminek következtében a matekutálata lassan oldódik majd.

Értelmetlen, kötelező

Azokat a dolgokat nem szeretjük, amiket értelmetlennek tartunk és ennek ellenére muszáj csinálni, mert kötelező. Sok diák a matek tanulását értelmetlennek találja, mert felnőttektől, barátoktól , szülőktől is ezt hallja. De a matektanulásnak nem az az értelme, hogy tudjon a középiskolás diák egy függvénytáblázatban lévő képletbe behelyettesíteni. A matekot azért érdemes tanulni, mert a feladatok megoldása közben megtanulható a problémamegoldás, a logikus gondolkodás. Ezekben pedig a hétköznapi életben minden nap szükség van.  Az interaktív videós tanfolyamok segítenek a matek feladatok megoldásának tervezését is megtanulni. Ezáltal megtanít különböző matematikai problémák megoldását, átlátását.

Te is szeretnéd, hogy a gyermeked végre leüljön matekozni, és ne kelljen ezért vele állandóan veszekedni? Akkor mutasd meg neki az interaktív matek tanfolyam ingyenes leckéit, hogy kedvet kapjon a matektanuláshoz.

Nagy Éva középiskolai matektanár, matek korrepetálás

Éva

GOMATEK