Szinusztétel feladatok megoldással

kis segítség matekból középiskolás gyermekednek

A diákok miután megtanulták a középiskolában a tompaszögek, illetve a derékszög szinuszát kiszámolni megismerkednek a szinusztétellel is. Sokakat már a tétel szó frusztrál, és leblokkol, mielőtt nekilátna a szinusztétel feladatok megoldásának. Pedig nem is nehéz ez, mutatok két példát megoldással együtt szinusztételes feladatokról. Valamint egy videót is belinkelek  illetve egy interaktív játékkal is gyakorolhat gyermeked.

Hogyan nem lehet szinusztétel feladatokat megoldani?

Biztos a te gyermekednek is segítség az, ha valaki elmagyarázza egy-két példán keresztül matekból a számára nehezebben érthető részeket. Egy matekfeladat megoldásához nélkülözhetetlen az elméleti anyag ismerete, és az erre épülő korábbi tananyagban való jártasság. Ezek nélkül, illetve egy számológép, valamint írásra alkalmas akár digitális eszközök nélkül ne üljön le szinusztételről szóló feladatokat megoldani. Fejben, számológép nélkül az interaktív játékhoz sem célszerű hozzáfogni.

Mi az a szinusztétel?

A szinusztétel azt mondja ki, hogy egy háromszögben két oldal aránya és a velük szemközti megfelelő szögek szinuszának aránya megegyezik.

Ezt az arányt a következőképpen is megfogalmazhatjuk. Egy oldal és a vele szemben lévő szög szinuszának aránya megegyezik egy másik oldal és az azzal szemközti szög szinuszának arányával.

A szinusztételt nem derékszögű háromszögekre alkalmazzuk elsősorban. Természetesen lehet derékszögű háromszög esetében is használni, de ott szögfüggvényekkel könnyebb, gyorsabb számolni.

Mikor alkalmazhatjuk a szinusztételt?

A szinusztételt akkor célszerű alkalmazni, amikor a háromszög két oldalát adta meg a feladat és az egyikkel szemben fekvő szöget. Ekkor szinusztétellel ki lehet számolni a másik adott oldallal szemközti szöget. A háromszög két szögének ismeretben a harmadik szög kiszámolható, hiszen tudjuk, hogy a háromszögek belső szögeinek az összege 180 fok.

Illetve akkor is alkalmazható a szinusztétel, amikor ismerjük a háromszög két szögét és az egyik oldalát. Ekkor könnyen meg tudjuk mondani a harmadik szög nagyságát. Ezután pedig az adott oldal és a vele szemközti szög szinuszának aránya egyenlő egy keresett oldal és a vele szemközti szög szinuszának az arányával.

Egyszerű szinusztétel feladat megoldással

Feladat: Egy háromszög két oldala 8 cm és 12 cm, a 8 cm-es oldallal szemben 40 fokos szög van. Mekkora a háromszög többi szöge?

Megoldás: Mivel nem derékszögű a háromszög, ezért nem szögfüggvényt alkalmazunk a feladat megoldása során. Két oldal és az egyikkel szemközti szög ismert, tehát szinusztétellel tudjuk megoldani a példát. Azaz a 8 cm-es oldal és a vele szemközti szög szinusza egyenlő a 12 cm-es oldal és a vele szemközti oldal szinuszával.

Miután ezt az egyenlőséget felírtunk keresztbe szorzunk és egy osztással megkapjuk a keresett szög szinuszát. Ebből számológépen visszakereséssel megvan a szög is. Arra figyelni kell, hogy akár tompaszögű is lehet a háromszög, vagyis két megoldásunk lesz. Majd mindkét esetben kiszámoljuk a háromszög harmadik szögét, felhasználva azt, hogy a belső szögek összege 180 fok.

szinusztétel feladat megoldással

Újabb példa

Feladat: Egy háromszög két szöge 50° és 60° a háromszög legkisebb oldala 10 cm. Hány cm a háromszög többi oldala?

Megoldás: Mivel a háromszögnek két szöge ismert, meg tudjuk mondani a harmadik szöget is. Ezt a két szöget kivonva 180 fokból azt kapjuk, hogy a harmadik szög 70°. Tehát a háromszög nem derékszögű. Tudjuk, hogy egy háromszögben a legkisebb oldal a legkisebb szöggel szemben van. Ezeket megadta a feladat, vagyis ismert a háromszög mindhárom szöge és az egyikkel szemközti oldal. Két szinusztételből meg tudjuk mondani a hiányzó oldalakat.

A 10 cm-es oldal és a vele szemközti 50 fokos szög szinusza egyenlő az egyik keresett oldal és a vele szemközti (mondjuk) 60 fokos szög szinuszával. Az egyenlet mindkét oldalát megszorozva a 60 fokos szög szinuszával, már meg is kapjuk a keresett oldalt. A harmadik oldal az képen látható módon szintén egy szinusztételből számolható, az előzőhöz hasonlóan.

szinusztétel feladatok megoldással

Hasonló szinusztétel feladat megoldását nézhet meg gyermeked ebben a videóban.

De ha nem csak ebből a feladattípusból lenne szükség állandó segítségre, akkor javaslom a GOMATEK interaktív tanfolyamokból gyakorlás. Itt ugyanis nemcsak megnézi, hogy más hogyan csinál meg is egy feladatot, hanem megtanul önállóan megoldani feladatokat. Ha még nem tettétek, akkor próbálja ki itt ingyen gyermeked. De persze ez sem való mindenkinek, csak a céltudatos, önállóan dolgozni akaró diákoknak. 

Nagy Éva középiskolai matektanár, matek korrepetálás

Éva

GOMATEK